Preparation and electrochemical properties of glass-polymer composite electrolytes for lithium batteries

Jaephil Cho and Meilin Liu*

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, U.S.A.

(Received 12 April 1996; in revised form 9 July 1996)

Abstract—Electrochemical behavior of a new class of glass-polymer composites (GPC), consisting of (100-x) vol% (0.56Li2Si0.19B2Si0.25LiI) glass and x vol% (P(EO)6,Li(N(CF3SO2)2) polymer with x = 7, 13 and 25, has been investigated in cells with different electrodes. Results show that the addition of the polymer to the glass powder increases not only the mechanical flexibility but also the ionic conductivity. The combination of impedance spectroscopy and 4-probe dc measurements indicates that the GPC with x = 13 vol% polymer exhibits the highest lithium ion conductivity, varying from 3 × 10^{-4} \Omega^{-1} \text{cm}^{-1} at room temperature to 1.4 × 10^{-3} \Omega^{-1} \text{cm}^{-1} at 80°C. In addition, the GPC electrolytes with x = 13 vol% seem to be relatively stable against Li, Li,Mn2O4, and carbon electrodes, since interfacial impedances between the electrolyte and the electrode materials are relatively constant at 70°C for up to 375 hours. © 1997 Elsevier Science Ltd. All rights reserved.

Key words: Glass-polymer composite electrolyte, solid electrolyte, lithium transference number, electrochemical stability, lithium battery.

1. INTRODUCTION

While lithium-ion batteries based on liquid electrolytes have seen significant progress over recent years [1–10], all-solid-state batteries based on solid electrolytes have attracted much attention because of their advantages over batteries based on liquid electrolytes, such as smaller possibility of electrolyte leakage, improved safety, and ease of fabrication. A desired electrolyte for a rechargeable Li battery ought to have high lithium ion conductivities, negligible electronic conductivities, and adequate stability against the two electrodes under operating conditions. In spite of the advantages of a solid electrolyte over a liquid electrolyte, the inherent low mobility of ionic species in solids has been the major limitation of solid electrolytes. This is particularly true for glass electrolytes. For instance, although Li-ion-conducting oxide glasses have shown some potential for battery applications [11], the lithium ion conductivity has to be enhanced to a level sufficient for practical battery applications. Recently, it was found that much higher conductivities can be achieved by substituting the larger and more polarizable sulfide ion for an oxide ion in the glass structure. With the replacement and the use of dopants, glasses based on B2S3, P2S5, and SiS2 [12–17] have shown conductivities of 10^{-4} to 10^{-3} \Omega^{-1} \text{cm}^{-1} at room temperatures.

Another inherent shortcoming of glass electrolytes is the lack of mechanical flexibility, or the brittleness. This can be overcome by forming a glass–polymer composite electrolyte. As recently suggested [18], the addition of a polymer to a glass electrolyte introduces mechanical flexibility to the composite. In addition, when the type and volume fraction of the polymer is properly chosen, the resulting composite electrolytes may exhibit higher ionic conductivity than that of a glass composite electrolyte because (i) the packing density of glass particles may be improved and (ii) the pores between glass particles are filled with a conducting polymer.

*Author to whom correspondence should be addressed.
In this paper, the effect of volume fraction of a polymer phase on the electrochemical properties of glass-polymer composite (GPC) electrolytes is investigated. The lithium ion transference number and ionic conductivity are correlated with the volume fractions of polymer in the GPC. The chemical stabilities of the GPC electrolytes are also studied using Li, Li,Ce, and Li,Mn₂O₄ as electrodes. Further, preliminary performance of a Li,C₆/GPC/Li,Mn₂O₄ cell based on the GPC electrolyte will be discussed.

2. EXPERIMENTAL

All chemicals handling, preparation of the GPC electrolytes, and cell assembly were performed in a glove box (Vacuum Atmosphere) with the residual O₂ and H₂O less than 5 ppm. Since the commercially available B₂S₃ has low purity and contains considerable amounts of water [19, 20], high purity B₂S₃ was prepared as follows. Appropriate amounts of amorphous boron powder (99.9%, Alfa) and crystalline sulfur (99.999%, Aldrich) were mixed in a mortar and pestle and the powder mixture was then transferred to a previously flame-dried, carbon-coated, and re-flame-dried silica tube. The carbon coating was formed by the pyrolytic decomposition of acetone on the inside of the tube at about 850°C. This carbon coating is necessary because uncoated silica tubes react with B₂S₃ at elevated temperatures according to

\[2B₂S₃ + 3SiO₂ \rightarrow 2B₂O₃ + 3SiS₂ \]

The tube was sealed under vacuum using a gas-oxygen torch, and was then heated in a rotating furnace to 850°C and held for 8 h. Then, the tube was quenched in air to room temperature and the obtained glassy B₂S₃ (v-B₂S₃) was homogenous and dark green in color. The IR spectral analysis indicated that the prepared v-B₂S₃ contained no observable amount of water. Also, total sulfur
analyses indicated that the prepared BzS3 contained 99% BzS and about 1% oxides [19, 20]. The 0.56Li2S·0.19B2S3·0.25LiI glasses were prepared by crushing the B2S3 in a mortar and pestle into a fine powder and then mixing with appropriate amount of Li2S (99.9%, Cerac) and LiI (99.999%, Aldrich) powder in a mortar and pestle. The powder mixture was then transferred to a carbon-coated silica tube and vacuum-sealed using a gas-oxygen torch. Subsequently, the tube was heated to 830°C and kept for 20 min before quenching in liquid N2 to form glasses.

The GPC electrolytes were prepared by mixing and grinding (100-x) vol% [0.56Li2S·0.19B2S3·0.25LiI] glass powder and x vol% [(P(EO)6)·LiN(CF3SO2),] (x = 7, 13, and 25) powder mixture in a mortar and pestle. Polyethylene oxide (Aldrich) and LiN(CF3SO2) (3M) were dried under vacuum at 50 and 110°C, respectively, for 10 h before use. The powder mixtures were pressed into pellets in a glove box and then kept at 80°C for 2 h to ensure the polymer flow into the voids between glass particles. MnO2 and Li2CO3 were reagent grade chemicals obtained from Aldrich and were used as received. Positive electrode material, Li,MnO+ was prepared in air by solid state reaction of Li2CO3 and MnO2 in a molar ratio 1:4. The mixture was calcined first at 650°C for 12 h and then at 800°C for 24 h to form the spinel phase, followed by slow cooling to room temperature. A composite positive electrode was prepared by mixing Li,MnO+, carbon blacks, and GPC electrolyte powder in a weight ratio of 40:10:50. Carbon (Alfa, 99.999%) and GPC electrolyte in a weight ratio of 50:50 were used as the negative...
Fig. 6. The observed voltages between se and re when a constant current is applied through ce and we in 4-probe dc measurements at 25, 50 and 80°C (the thickness of the GPC (x = 13) was 0.9 mm and the electrode area was 2.85 cm²).

3. RESULTS AND DISCUSSION

3.1. Preparation of 0.56Li₂S·0.19B₂S₃·0.25LiI glass

It was found that a direct quenching the melt of 0.56Li₂S·0.19B₂S₃·0.25LiI in liquid nitrogen was sufficiently rapid to obtain glasses. However, partially crystallized glasses or polycrystals were observed when the amount of LiI and Li₂S was more than 25 mol% and 56 mol%, respectively. This is because the continuous addition of glass dopants (LiI and Li₂S) increased the break-down of the long range order of the glass network (viz., the increasing formation of the non-bridging short order structure) and, therefore, the limit of glass formation was eventually reached.

3.2. Total conductivity

Figures 3 and 4 show some typical impedance spectra of the GPC and polymer electrolytes measured in a 4-probe cell, Li/PEO/GPC (or polymer)/PEO/Li, with two reference electrodes. Since the voltages were acquired from the sensing electrode and the reference electrode while a current was applied through the counter and working electrodes, the impedance spectra shown in Figs 3 and 4 are the impedances of the electrolytes. Accordingly, the total resistance or total conductivity of the electrolytes can be readily determined from these impedance spectra.

In Fig. 5 is shown the temperature dependence of conductivities of [P(EO)₉·Li(N(CF₃SO₂))₃] polymer, glass, and GPC electrolytes with different volume fractions of polymer measured in cells with different electrodes. The addition of 13 vol% [P(EO)₉·Li(N(CF₃SO₂))₃] into 87 vol% [0.56Li₂S·0.19B₂S₃·0.25LiI] glass powder showed the highest conductivity and good mechanical integrity. The ionic conductivity of the GPC electrolyte with x = 13 increased from about 3 × 10⁻⁴ Ω⁻¹ cm⁻¹ at room temperature to 1.4 × 10⁻³ W⁻¹ cm⁻¹ at 80°C.
As expected, the ionic conductivities of the GPC electrolyte measured in cells with different electrodes (Li, stainless steel, and Li,C6/Li,MnO4) are in a good agreement. It is clear that the conductivities of the GPC electrolyte are greater than those of a pellet consisting of the pure glassy electrolyte powder. We believe that this is because the added polymer fills up the pores among the glass particles.

The conductivities of the GPC with \(x = 7 \) were similar to those of the glass without polymer, indicating that \(7 \text{ vol}\% \) polymer added to glass powder is not enough to fill up the voids among the glass particles. The conductivities of the GPC with \(x = 25 \), however, were much smaller than those of GPC with \(x = 13 \), suggesting that P(EO)_{30} Li(N(CF3SO2)) polymer added was too much and influenced the total conductivity of the composite. As seen in Fig. 5, the conductivities of the polymer electrolyte are much smaller than those of the glass, ranging from \(1 \times 10^{-6} \Omega^{-1} \text{ cm}^{-1} \) at room temperature to \(9 \times 10^{-5} \Omega^{-1} \text{ cm}^{-1} \) at 80°C.

3.3. Lithium ion transference number (\(t_{\text{Li}} \))

Figure 6 shows the observed voltage between the sensing and the reference electrode as a function of time when a constant current was applied through the working and counter electrodes. In a steady state, only lithium cations are allowed to transport through the cell and all other charged species, if there are any, are blocked. Thus, the resistance to the motion of lithium ions in the GPC electrolyte, i.e., the resistance of the electrolyte when used in a lithium battery, is

Fig. 7. Current–voltage plots for 4-probe measurements at different temperatures for GPC electrolytes with \(x = 0 \) (glass), 7, 13, 25, and 100 (polymer).
given by

\[R_{Li} = \frac{V_{\text{steady state}}}{I_{\text{applied}}} \]

(1)

Figure 7 shows the dependence of the observed voltages between \(se \) and \(re \) on the applied currents through \(we \) and \(ce \) at 25, 50 and 80°C. The slopes of these plots give directly the values of \(R_{Li} \). Thus, the lithium ion transference number of the electrolytes can be approximated by

\[t_{Li} = \frac{\sigma_{Li}}{\sigma_{\text{total}}} = \frac{R_{\text{total}}}{R_{Li}}, \]

(2)

where \(R_{\text{total}} \) is the total resistance of the GPC or \([\text{P}(\text{EO})_6\text{LiN}(\text{CF}_3\text{SO}_2)_2] \) electrolyte as determined from an impedance measurement.

The calculated values of \(R_{\text{total}}/R_{Li} \) for the glass and for the GPC electrolytes with 7 and 13 vol% polymers are around 0.98 at various temperatures, which are in good agreement with those reported in the literature for similar glass systems [14, 17]. This suggests that the glass is a single ion (Li\(^+\)) conductor. However, the calculated ratio of \(R_{\text{total}}/R_{Li} \) is about 0.84 for the GPC with \(x = 25 \) and varied from 0.32 to 0.41 for the polymer electrolyte at various temperatures, as summarized in Fig. 8 and Table 1. Although the ratio of \(R_{\text{total}}/R_{Li} \) may be different from the lithium ion transference number for polymer electrolytes due to deviations from ideality [22] (i.e., interactions between cations and anions in polymers), the measurement of \(R_{\text{total}}/R_{Li} \) is adequate for the GPC electrolytes for the purpose of this study.

Large deviations of \(R_{\text{total}}/R_{Li} \) ratio from unity clearly indicate that the addition of 25 vol% polymer to the GPC is excessive; the polymer phase disrupts the continuity of glass phase and, hence, reduces the conductivity and lithium ion transference number of the composite. The lithium ion conductivities, \(\sigma_{Li} \), the useful conductivities when used as an electrolyte for a lithium battery, of various electrolytes with different volume fraction of PEO are summarized in Fig. 9. Clearly, the GPC with \(x = 13 \) exhibited the highest lithium conductivities among all electrolytes investigated in this study. Thus, this electrolyte was further studied in terms of stability against various electrode materials.

3.4. Electrolyte/electrode interfacial resistances

To determine the stabilities of the GPC electrolytes with 13 vol% polymer against Li, Li\(_2\)O, and Li\(_2\)Mn\(_2\)O\(_4\), the impedance spectra of three symmetric cells, Li/GPC/Li, Li\(_2\)O/GPC/Li, and Li\(_2\)O/GPC/Li\(_2\)Mn\(_2\)O\(_4\), were measured at 70°C in a sealed cell (Fig. 1) as a function of time. Figure 10 shows the...
Glass-polymer composite electrolytes 1487

The evolution of the interfacial resistance between lithium and the GPC, as shown in Fig. 11(a), increased from the initial value of 586 Ω to 631 Ω after 150 hours operation at 70 °C, and then stayed relatively constant, suggesting that the interface is relatively stable during storage at 70 °C. The initial increase in the interfacial resistance is believed to be due to the formation of a passivation layer at the interface. Likewise, it has been reported that the B2S3-Li1S-LiI glasses have excellent stability against Li metal at 50°C for a long storage time [12].

Further, the trend of the interfacial resistance of the Li,C6/GPC/Li,C6 cell was similar to that of the Li/GPC/Li cell. However, the interfacial resistance of the Li,Mn2O4/GPC/Li,Mn2O4 cell remained unchanged during storage, suggesting that there is no interfacial reaction between the two materials. As expected, the bulk resistances of the GPC electrolytes in the cells with different electrodes remained relatively unchanged as shown in Fig. 11(b).

3.5. Cell performance

A cell with a capacity of 2 C was assembled in the fully discharged state and the OCV of the cell was 4.5 V after being charged. The Li,C6/GPC/Li,Mn2O4 cell using GPC electrolyte with 13 vol% polymer was initially cycled between 4.5 and 3 V at 70°C with a charge and discharge current density of 0.1 mA cm⁻² (Fig. 12). The capacity loss during cycling was relatively small and the cell exhibited good reversibility over 10 cycles and the utilization of the positive electrode was about 62% for the discharge.

4. CONCLUSIONS

Li⁺-ion-conducting glass–polymer composite (GPC) electrolytes with conductivities ranging from 3×10^{-4} to 1.4×10^{-3} Ω⁻¹ cm⁻¹ has been developed. Results indicate that the addition of 13 vol% polymer electrolyte (PEOₓ/LiN (CFₓSOₓ)) to 87 vol% glass powder...
Fig. 12. Cycling curves of a Li$_x$C$_6$/GPC/Li$_y$Mn$_2$O$_4$ cell at 70°C with a charge and discharge rate of 0.1 mA cm$^{-2}$.

(0.55Li$_x$S·0.19B$_2$S·0.25LiI) increases mechanical flexibility and ionic conductivity. The lithium ion transference number of the GPC electrolyte with 13 vol% polymer is about 0.98. The GPC electrolytes with $x = 13$ have also shown sufficient stabilities with respect to Li, Li$_x$C$_6$ and Li$_y$Mn$_2$O$_4$ electrode materials. The cycling of a solid state Li$_x$C$_6$/GPC/Li$_y$Mn$_2$O$_4$ cell has demonstrated good stability and reversibility of the system.

REFERENCES