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Abstract

Nanostructured composite cathodes graded in both composition and microstructure have been successfully fabricated for the first tim
using combustion CVD process. The functionally graded structures of these cathodes dramatically increase the rates of electrode reactior
enhance the transport of oxygen molecules to the active reaction sites, and significantly improve the compatibility between the electrodes an
other cell components. As a result, extremely low interfacial polarization resistances and high power densities have been achieved at operatir
temperatures of 600-85C, suggesting that the CCVD process has great potential for cost-effective fabrication of nanostructured fuel cell
electrodes.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction temperature SOFCs, which usually employ a yttria-stabilized
zirconia (YSZ) electrolyte, a LSM cathode and a nickel-
Solid oxide fuel cells (SOFCs) will inevitably exert a YSZ cermet anode, operate in the temperature range of
great impact on the development of the next generation en-800-1000C. LSM perovskite is widely used as a cathode
ergy technology and the hydrogen economy as fossil fuels material due to its high electrochemical activity, good stabil-
are running out. For conventional SOFCs, a high operat- ity, and thermal expansion compatibility with YSZ at the cell
ing temperature (for example, 800-10@) is required to operating temperature. Reducing the operating temperature
ensure sufficiently high ionic conductivity and fast elec- down to 600—800C brings both dramatic technical and eco-
trode kinetics. Reduction of the operating temperature of nomic benefits. The cost of SOFC technology may be dra-
SOFCs is desirable to lower the materials cost and miti- matically reduced since much less expensive materials can
gate technical issues associated with elevated temperaturebe used in cell construction and novel fabrication techniques
[1-6]. However, conductivities of cell component materials can be applied to the stack and system integration. Further,
decrease exponentially as temperature drops, and interfacials the operating temperature is reduced, system reliability
polarization resistances increase significantly, dramatically and operational life increase as does the possibility of using
diminishing the output power densities of these fuel cells. SOFCs for a wide variety of applications, including residen-
Previous researchers have reported fabrication of composi-tial and automotive applications. However, as the operating
tionally graded composite cathodes using various techniquestemperature is reduced, some critical issues arise, such as the
to tailor the mismatch between the physical properties of exponential reduction in conductivity for LSM, and the dra-
electrode materials and the electrolyte. Traditional high- matic increase of interfacial polarization resistances between
the LSM cathode and YSZ electrolyte. It has been recog-
* Corresponding author. Tel.: +1 404 894 6114; fax: +1 404 894 9140, Nized that LSC offers a much higher electrical conductivity
E-mail addressmeilin.liu@mse.gatech.edu (M. Liu). than LSM at all temperatures. Unfortunately, a higher thermal
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expansion coefficient and reactivity restrict its direct use with 2. Experimental methods
YSZ electrolyte.

Several strategies have been adopted to improve inter- Detailed description of combustion CVD apparatus used
facial conditions and electrochemical performance of the for this study is available elsewhef23]. Metal nitrates of
LSM/YSZ system, including introduction of ionically con-  Sr, Sm, Co, Ce, and Ni were obtained from Aldrich. A so-
ducting secondary phases to form composite electrodes,lution was prepared by dissolving stoichiometric amounts of
development of compositionally graded structures, and the precursors into an organic solvent and a magnetically stirring
employment of other fabrication approaches. It was found until completely dissolved. Methane was used as the fuel gas
that the interfacial polarization resistance could be reducedand oxygen served as the oxidant for the combustion flame.
to one-fourth of its original value by adding 50 wt.% YSZ into Dense YSZ pellets of 14 mm diameter and 240 thick-
the LSM cathod¢7,8]. It was later reported that 50 wt.% ad- ness were prepared by tape casting and sintered at°€©400
dition of gadolinia-doped ceria (GDC) instead YSZ reduces for 5h. Fig. 1 shows a schematic diagram of the SOFC de-
the value to 1.06 cnm? at 700°C and 0.492 cn? at 750°C, sign. Starting with a tape cast YSZ pellet of 14 mm diame-
which is two to three times lower than for LSM-YSZ com- ter and 24Q.m thickness, a 3dm layer of porous 60 wt.%
posite cathodes on a YSZ electrol{8. Jiang demonstrated NiO—-40wt.% GDC was deposited onto one side of the pel-
that by using ion impregnation methods, the interfacial po- let using combustion CVD at a temperature of 1260 Af-
larization resistances of the LSM-GDC/YSZ system can be ter deposition of one electrode, the precursor solution was
further reduced down to 0.%2cn? at 700°C [10]. switched, and substrates were turned over for deposition

Functionally graded materials (FGM) have been employed of the cathode materials. First a fLéh thick fine grained
to join dissimilar materials or to achieve unique properties. 60wt.% LSM-40wt.% GDC was deposited on YSZ elec-
A compositional gradient is required in a large number of trolyte. Following this, the composition of the precursor so-
engineering applications, such as joining metallic materials lution was changed to 30 wt.% LSM—-30 wt.% LSC-40 wt.%
with ceramicq11]. On the other hand, materials exhibiting GDC. Sequentially, a coarse layer of 60 wt.% LSC—-40 wt.%
graded porosity are attractive for other applications, includ- GDC was deposited on top of the cathode.
ing graded ceramic prefornd2], special heat insulation The microscopic features of the prepared electrodes were
and/or thermal shock resistant structuf&3], and medical characterized using a scanning electron microscope (SEM,
implants[14,15] Recently the concept of FGM was intro- Hitachi S-800) with an energy dispersive spectroscopy (EDS)
duced to fabricate SOFC components. Single-phase cathodattachment. Electrochemical performance of the cells was
materials (such as LSM/LSC) and composite cathodes (suchmeasured from 600 to 85C at 50°C increment using hu-
as LSM/LSC-YSZ/GDC) were prepared on a YSZ elec- midified (3 vol.% water) hydrogen as fuel and stationary air
trolyte by different methods, such as screen prinfibg], as oxidant, both at ambient pressure. Cell impedance was
slurry-spraying[17], spray-painting[18], and slurry coat- measured in the frequency range from 0.01 Hz to 100 kHz
ing [19]. Reduced interfacial polarization resistances and im- with an EG&G Potentiostat/Galvanostat (Model 273A) and
proved electrochemical performances have been reported (i.eLock-in Amplifier (5210).
0.47Q2cn? [19] and 0.2 cn? [18] at 750°C). However, all
the work reported in the literature only focused on cathodes
with a compositional gradient. Ideally, the best structure fora 3. Results and discussion
functional SOFC should be the one with both compositional
gradient and porosity gradient, consisting of fine grains (and  Shown inFig. 2(a) is a cross-sectional view (as frac-
high surface area) close to the electrode/electrolyte surfacetured) of a half-cell with the composite cathode supported
and large grains (and thus large pore size) at air/oxygen sideby a 240um thick dense YSZ electrolyte. The cathode fab-

It has been demonstrated that nanostructured electrodesicated by combustion CVD consists of three porous layer
with significantly high surface area offer superior electro- structures and is graded in both microstructure and composi-
chemical properties as long as sufficiently large pore size tion, with about 5um thick 60 wt.% LSM—-40 wt.% GDC fine
and enough porosity are providgD,21] Our recent work
showed that nanostructured electrodes dramatically reduce,
electrode/electrolyte interfacial polarization resistances and
improve cell performancg22]. In this article, we report
our work on fabrication of nanostructured and function-
ally graded composite cathodes, which are graded in mi-
crostructure as well as in composition, using combustion ——YSZ electrolyte

CVD process. A schematic diagram of the fabricated SOFC
&m —60% Ni0/40% GDC

system is depicted iRig. 1L The resulting SOFCs exhibited
extremely low interfacial polarization resistances and high

powder density at the operating temperature range of 600—Fig. 1. A schematic diagram of the functionally graded SOFC configura-
800°C. tion.

—60% LSC/40% GDC

30% LSM/30% LSC/40% GDC
000 — 60% LSM/40% GDC
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Fig. 2. (a) Cross-sectional fracture surface of the functionally graded cathode fabricated on an YSZ pellet using a combustion CVD process, (b) highe
magnification image of the cathode showing the nanostructure, (c) EDS dot mapping showing Mn distribution on the cross-section surface, and (d) EDS do
mapping of Co distribution.

agglomerates (04om diameter) at the bottom (close to YSZ gen reduction. In addition, these Mn rich layers provide a
electrolyte), followed by um thick 30 wt.% LSM-30wt.%  fast electrochemical reaction rate, high stability and a sat-
LSC-40wt.% GDC fine agglomerates (@B diameter), isfactory match in thermal expansion with the YSZ elec-
and 15wm thick 60wt.% LSC-40wt.% GDC coarse ag- trolyte. Meanwhile, the large interconnected pore channels
glomerates (2—gm diameter) on the top (air side). The within the coarse top layer facilitate oxygen mass trans-
two bottom layers are actually nanostructured as shown inport. The Co rich top layer has a higher conductivity as
Fig. 2(b), offering extremely high surface area for oxy- well.
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Fig. 3. (a) Impedance spectra of a single fuel cell as measured using a two-electrode configuration, and (b) bulk electrolyte Rgistaddatérfacial
polarization resistanceR{ + R:) determined from impedance spectra acquired at different temperatures.
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Fig. 4. Comparison of interfacial polarization resistances for YSZ elec-
trolyte/LSM based electrodes fabricated using different techniques: spin-
coating (symmetrical cell, tested in aff], slurry-spraying (symmetrical
cell, tested in air)17], ion impregnation (asymmetrical cell with Pt counter
electrode on the other side of electrolyte, tested in[a@), and combustion
CVD (full cell, tested in air).

It is difficult to distinguish the bottom layers,
60wt.% LSM—-40wt.% GDC and 30wt.% LSM-30wt.%
LSC-40wt.% GDC in the SEM micrographs, indicating that
the porosity and microstructural features were similar. How-
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YSZ/LSM-GDC interface to LSC-GDC airside, while the
Co distribution exhibited the opposite trend as shown in
Fig. 2(d). Unlike compositional layered structures fabricated
by stacking or spray-paintind8], where the abrupt compo-
sition change was usually easily observed between adjacent
layers, composition of the structures fabricated by combus-
tion CVD changed gradually across the interface.

Shown inFig. 3(a) are the impedance spectra of the fuel
cell measured at 700 and 800 under open circuit condi-
tions using a two-electrode configuration. The open circuit
voltages (OCV) were 1.06, 1.03 and 1.0V at testing tem-
peratures of 600, 700 and 800, respectively, indicating no
gas crossover and negligible electronic conductivity of the
YSZ electrolyte. The bulk resistance of the electrolyRg) (
and the polarization resistances of the electrode—electrolyte
interfaces R, + R;) can thus be determined directly from the
impedance data. Shown fitig. 3(b) are the electrolyte resis-
tancesRy) and the total interfacial resistancé®, - R;) The
electrode—electrolyte interfacial polarization resistance is es-
timated to be 1.62 cn? at600°C, 0.432 cm? at 700°C, and
0.11Q cn? at 800°C, respectively. At the same testing tem-
peratures, the bulk resistances are 2.24, 0.94, and 0450 cm
respectively.

Fig. 4 shows the polarization resistance of the cell with
electrodes fabricated by combustion CVD, together with data
reported in the literature for SOFCs with LSM based cathodes
and YSZ electrolyte. While most polarization resistances re-
ported in the literature were measured using a symmetrical
cell configuration, they should be comparable to those ob-

ever, an EDS dot mapping techniqgue revealed the composi-tained from fuel cells if the cathode—electrolyte interfacial
tional changes on the cross-sectional micrograph. As shownpolarization resistances are properly separated from the rest

in Fig. Zc), the Mn content gradually decreased from the

of the cell since partial shorting due to electronic conduction
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Fig. 5. Cell voltages and power densities as a function of current density for a fuel cell with functionally graded cathode and anode fabricatetusiiognc
CVD on a YSZ electrolyte membrane of 2dén thick (Testing conditions: hydrogen with 3 vol.% of water vapor as the fuel and stationary air as the oxidant,
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